Jump to content

SUBIECTE NOI
« 1 / 5 »
RSS
Info Coronavirus/Vaccinare vs Fake News

Garnitura termopan

Android 13 - lansare oficiala

Recomandare saltea cu arcuri 160x...
 Sfat achiziție family car SH 11.0...

Audi A4 B9 - Scarțait metali...

Aventuri cu Distrigaz (la bloc)

Deschidere canale TV cu VLC, gen ...
 Muzeul National Tehnic „Dim...

Olive Villas , Sozopol

retragere USD de la ATM in Romania

Romanii si sistemele de canalizar...
 Intocmire PUZ pentru schimbare de...

Somiera cu lamele curbate + salte...

Deconectare aragaz

Sfat achizitie masina noua buget ...
 

Vânătoare de planete locuibile

- - - - -
  • Please log in to reply
211 replies to this topic

#181
yugo1

yugo1

    New Member

  • Grup: Junior Members
  • Posts: 15
  • Înscris: 10.04.2018
Planete locuibile:

UNA din ele trebuie sa aiba viata, sa fie locuibila, desi cam toate au fie temperaturi extreme (deci asta inseamna o clima foarte agitata), fie au masa mai mare sau mai mica decat Pamantul, fie nu stiu sa se roteasca in jurul axei proprii.
  • Kepler-1638b (Lebada-2900 de ani lumina)
  • LHS 1140 b (Balena - 40 de ani lumina)
  • Luyten b (Cainele Mic -12 ani lumina)
  • Kapteyn b (Pictorul - 13 ani lumina)
  • Kepler-1229b (Lebada - 770 ani lumina)
  • Wolf 1061c (Oficius - 14 ani lumina)
  • Kepler-452b (Lebada - 1400 ani lumina)
  • Kepler-442b (Lira - 1120 ani lumina)
  • Gliese 667 Cc (Scorpion - 40 de ani lumina)
  • Kepler-186f (Lebada - 500 ani lumina)
  • Kepler-62f (Lira - 1200 ani lumina)
  • TRAPPIST-1e (Varsatorul - 40 de ani lumina)
  • Kepler-438b (Lira -470 de ani lumina)
  • Kepler-296e (Lira - 34 de ani lumina)
  • Kepler-62e (Lira - 1200 ani lumina)
  • Gliese 832 c (Cocorul - 16 ani lumina)
  • K2-3d (Leu - 137 ani lumina)
  • HD 40307 g (Pictorul - 42 ani lumina)
  • Gliese 163 c (Pestele de Aur - 50 ani lumina)
  • Kepler-61b (Lebada - 1064 ani lumina)
  • Kepler-22b (Lebada -600 ani lumina)
  • Ross 128 b (Fecioara -10 ani lumina)


Proxima Centauri b din Constelatia Centaurului aflata la 4,2 ani lumina distanta - este cea mai apropiata planeta terestra de noi, apartinand celei mai apropiate stele de noi, Proxima Centauri.

Dar e foarte inghetata, are vreo -40 de grade C si nu are rotatie in jurul propriei axe.
Nu sunt semne ca ar avea viata inteligenta pe acolo.


Dar am putea sa o colonizam peste 200 000 de ani dupa ce vom mai avansa tehnologic putin si vom fabrica nave spatiale care sa ajunga acolo in 80 000 de ani!

#182
myspace

myspace

    Member

  • Grup: Members
  • Posts: 446
  • Înscris: 09.09.2008
Satelitul Tess a fost lanasat de la Cape Canaveral

spacealliance.ro/articles/view.aspx?id=20180419233629

#183
karax

karax

    Guru Member

  • Grup: Senior Members
  • Posts: 21,517
  • Înscris: 14.10.2017
Va studia 85% din cer si va putea vedea si planetele mai mici , analoage ale pamantului , care e mai probabil sa aiba viata
While previous sky surveys with ground-based telescopes have mainly detected giant exoplanets, TESS will examine a large number of small planets around the nearest stars in the sky. TESS will record the nearest and brightest main sequence stars hosting transiting exoplanets, which are the most favorable targets for detailed investigations.[10]

#184
tyrionpiticul

tyrionpiticul

    Junior Member

  • Grup: Members
  • Posts: 138
  • Înscris: 20.04.2018

View Postkarax, on 21 aprilie 2018 - 14:26, said:

Va studia 85% din cer si va putea vedea si planetele mai mici , analoage ale pamantului , care e mai probabil sa aiba viata
While previous sky surveys with ground-based telescopes have mainly detected giant exoplanets, TESS will examine a large number of small planets around the nearest stars in the sky. TESS will record the nearest and brightest main sequence stars hosting transiting exoplanets, which are the most favorable targets for detailed investigations.[10]
Nu, nu  va vedea nimic.
Tot pe baza de rotatie si luminozitate se va stabili daca stelele au planete sau nu si daca planetele respective sunt locuibile.

Edited by tyrionpiticul, 21 April 2018 - 16:51.


#185
karax

karax

    Guru Member

  • Grup: Senior Members
  • Posts: 21,517
  • Înscris: 14.10.2017
The sole instrument on TESS is a package of four wide-field-of-view CCD cameras. Each camera features a low-noise, low-power 16.8 megapixel CCD detector created by the MIT Lincoln Laboratory. Each has a 24° × 24° field of view, a 100 mm (4 in) effective pupil diameter, a lens assembly with seven optical elements, and a bandpass range of 600 to 1000 nm.[4][39] The TESS lenses have a combined field of view of 24° × 96° (2,300 deg2, around 5% of the entire sky) and a focal ratio of f/1.4. The ensquared energy, the fraction of the total energy of the point-spread function that is within a square of the given dimensions centered on the peak, is 50% within 15 × 15 μm and 90% within 60 × 60 μm.[39] For comparison, Kepler's entire mission only covered only an area of the sky of 105 deg2

View Posttyrionpiticul, on 21 aprilie 2018 - 16:51, said:

Nu, nu  va vedea nimic.
Tot pe baza de rotatie si luminozitate se va stabili daca stelele au planete sau nu si daca planetele respective sunt locuibile.
Si eu ce am scris?

#186
myspace

myspace

    Member

  • Grup: Members
  • Posts: 446
  • Înscris: 09.09.2008
Despre orbita lui Tess

spacealliance.ro/articles/view.aspx?id=20180422160803

#187
EUtraveler

EUtraveler

    Junior Member

  • Grup: Members
  • Posts: 86
  • Înscris: 03.06.2018
planeta noastra e perfecta!  
[ https://www.youtube-nocookie.com/embed/9mVRc80vhhQ?feature=oembed - Pentru incarcare in pagina (embed) Click aici ]

[ https://www.youtube-nocookie.com/embed/9UB3FrT5SAY?feature=oembed - Pentru incarcare in pagina (embed) Click aici ]

[ https://www.youtube-nocookie.com/embed/18rARy8g4Hc?feature=oembed - Pentru incarcare in pagina (embed) Click aici ]

[ https://www.youtube-nocookie.com/embed/PmMeAv-1FBk?feature=oembed - Pentru incarcare in pagina (embed) Click aici ]

[ https://www.youtube-nocookie.com/embed/H8XWy2AvqlU?feature=oembed - Pentru incarcare in pagina (embed) Click aici ]

Edited by EUtraveler, 17 June 2018 - 20:35.


#188
maccip

maccip

    44 ani

  • Grup: Senior Members
  • Posts: 29,345
  • Înscris: 06.01.2007
Videourile astea sunt misto ca entertaining stiintific, dar n-au nicio treaba cu stiinta.

#189
EUtraveler

EUtraveler

    Junior Member

  • Grup: Members
  • Posts: 86
  • Înscris: 03.06.2018

View Postmaccip, on 17 iunie 2018 - 21:17, said:

Videourile astea sunt misto ca entertaining stiintific, dar n-au nicio treaba cu stiinta.
Argumenteaza te rog!

#190
maccip

maccip

    44 ani

  • Grup: Senior Members
  • Posts: 29,345
  • Înscris: 06.01.2007
Multa maginatie. Prea multa imagintie.
Cam ca emisiunile lui Mironov de prin 199X cand ne zicea ca in 2000 ne vom plimba cu farfuria sburatoare.
Imaginatie, multa imaginatie, prea multa imaginatie.

#191
StefanLiviu

StefanLiviu

    Senior Member

  • Grup: Senior Members
  • Posts: 2,017
  • Înscris: 08.01.2018

View Postvyctoras1985, on 19 iunie 2015 - 07:32, said:

stim bine ca undele radio se duc in spatiu.
nu se mai stie nici asta....documenteaza-te

View Postgabicen, on 22 februarie 2017 - 21:27, said:

1. Cred ca astia de la NASA incearca sa explice de ce cheltuie aiurea multi bani.
2. teraformarea planetei Marte?
1. vrei sa zici inca de la infiintare incearca sa explice pe ce au cheltuit bani
2. marte? aici in groenlanda?

#192
aaaa4567

aaaa4567

    Senior Member

  • Grup: Senior Members
  • Posts: 8,406
  • Înscris: 18.10.2011

View Postyugo1, on 10 aprilie 2018 - 18:52, said:

Planete locuibile:

UNA din ele trebuie sa aiba viata, sa fie locuibila, desi cam toate au fie temperaturi extreme (deci asta inseamna o clima foarte agitata), fie au masa mai mare sau mai mica decat Pamantul, fie nu stiu sa se roteasca in jurul axei proprii.
  • Kepler-1638b (Lebada-2900 de ani lumina)
  • LHS 1140 b (Balena - 40 de ani lumina)
  • Luyten b (Cainele Mic -12 ani lumina)
  • Kapteyn b (Pictorul - 13 ani lumina)
  • Kepler-1229b (Lebada - 770 ani lumina)
  • Wolf 1061c (Oficius - 14 ani lumina)
  • Kepler-452b (Lebada - 1400 ani lumina)
  • Kepler-442b (Lira - 1120 ani lumina)
  • Gliese 667 Cc (Scorpion - 40 de ani lumina)
  • Kepler-186f (Lebada - 500 ani lumina)
  • Kepler-62f (Lira - 1200 ani lumina)
  • TRAPPIST-1e (Varsatorul - 40 de ani lumina)
  • Kepler-438b (Lira -470 de ani lumina)
  • Kepler-296e (Lira - 34 de ani lumina)
  • Kepler-62e (Lira - 1200 ani lumina)
  • Gliese 832 c (Cocorul - 16 ani lumina)
  • K2-3d (Leu - 137 ani lumina)
  • HD 40307 g (Pictorul - 42 ani lumina)
  • Gliese 163 c (Pestele de Aur - 50 ani lumina)
  • Kepler-61b (Lebada - 1064 ani lumina)
  • Kepler-22b (Lebada -600 ani lumina)
  • Ross 128 b (Fecioara -10 ani lumina)
Proxima Centauri b din Constelatia Centaurului aflata la 4,2 ani lumina distanta - este cea mai apropiata planeta terestra de noi, apartinand celei mai apropiate stele de noi, Proxima Centauri.

Dar e foarte inghetata, are vreo -40 de grade C si nu are rotatie in jurul propriei axe.
Nu sunt semne ca ar avea viata inteligenta pe acolo.


Dar am putea sa o colonizam peste 200 000 de ani dupa ce vom mai avansa tehnologic putin si vom fabrica nave spatiale care sa ajunga acolo in 80 000 de ani!

Realizati ca abia putem transporta cativa oameni si pe distante mult mai apropiate, nu?

Adica, ce spuneti voi acolo va fi fezabil doar peste cateva (multe, probabil) sute de ani, dupa ce vom fi modificat fiinta umana astfel incat sa poata trai in noile conditii (atmosfera fara oxigen, temepraturi cu zeci/sute de grade diferite fata de cele pamantene) lucruri care sunt de neconceput astazi. sa ne gandim ca si o diferenta de 10 grade e resimtita de oameni. Un -30 de grade C e prea putin pentru multi dintre noi..

Vreau sa spun ca inainte de mutare, se va cauta human reengineering. Cat despre faptul ca vom fi fortati.. - numai schimbarile antropice poate ne vor forta, in rest, evolutia naturala catre un Pamant nelocuibil e foarte lenta (zeci de mii de ani, cel mai probabil). Iar daca vine un asteroid, vreo glaciatiune, sigur nu mai avem timpd e migrat...

Edited by aaaa4567, 30 June 2018 - 11:51.


#193
Infinitty

Infinitty

    Senior Member

  • Grup: Senior Members
  • Posts: 7,401
  • Înscris: 14.12.2008

View Postaaaa4567, on 30 iunie 2018 - 11:48, said:

Realizati ca abia putem transporta cativa oameni si pe distante mult mai apropiate, nu?

Adica, ce spuneti voi acolo va fi fezabil doar peste cateva (multe, probabil) sute de ani, dupa ce vom fi modificat fiinta umana astfel incat sa poata trai in noile conditii (atmosfera fara oxigen, temepraturi cu zeci/sute de grade diferite fata de cele pamantene) lucruri care sunt de neconceput astazi. sa ne gandim ca si o diferenta de 10 grade e resimtita de oameni. Un -30 de grade C e prea putin pentru multi dintre noi..

Vreau sa spun ca inainte de mutare, se va cauta human reengineering. Cat despre faptul ca vom fi fortati.. - numai schimbarile antropice poate ne vor forta, in rest, evolutia naturala catre un Pamant nelocuibil e foarte lenta (zeci de mii de ani, cel mai probabil). Iar daca vine un asteroid, vreo glaciatiune, sigur nu mai avem timpd e migrat...

Pamantul nu poate fi distrus si indiferent de conditii mereu vor exista zone habitabile cu viata in zonele intertropicale, fie la poli, fie la altitudine, fie in oceane si mari, fie sub pamant.

Oamenii nu mai au nevoie de expansiune, hrana, samd, astazi umanitatea intra in contractie cantitativa si in expansiune calitativa si oricum Terra are zone intregi slab locuite (jumatate din uscat este desert iar un sfert sunt stepe intinse slab populate (Kazahstan, Mongolia, Patagonia, Australia, samd).

Am ajuns sa cred ca nici macar Venus nu va fi teraformat, deoarece dioxidul de carbon de acolo (cat si azotul si alte elemente), sunt substante pure in cantitati planetare si la suprafata, astfel ca robotii de pe Terra ar putea semi-umbri Venus si ar putea construi mari nave cosmice si structuri carbonice transplanetare de tip lift, catapulte, samd.

#194
Infinitty

Infinitty

    Senior Member

  • Grup: Senior Members
  • Posts: 7,401
  • Înscris: 14.12.2008
https://en.wikipedia...st_bright_stars

Sunt cateva stele interesante in vecinatatea noastra:

19 ani lumina - Sigma Draconis;

24 a.l - HD 4628;

24 a.l - Beta Hydri

24,4 a.l - 107 Piscium

25 a.l -Gliese 673

26,3 a.l - Pi3 Orionis

26,6 -Gliesse 884

27,5 a.l - Beta Canum Venaticorum

28 a.l -61 Virginis

28,4 a.l - HR 1614 (284 G. Eridani, GJ 183)

29 a.l -HR 7722 (also known as 5 G. Capricorni or Gliese 785)

30 a.l -Beta Comae Berenices

30 a.l - Gamma Pavonis

... si multe altele dincolo de 32 de ani lumina distanta.

#195
Infinitty

Infinitty

    Senior Member

  • Grup: Senior Members
  • Posts: 7,401
  • Înscris: 14.12.2008
https://en.m.wikiped...d_dwarf_systems

The habitability of red dwarf systems is determined by a large number of factors from a variety of sources. Although the low stellar flux, high probability of tidal locking, small circumstellar habitable zones, and high stellar variation experienced by planets of red dwarf stars are impediments to their planetary habitability.

Intense tidal heating caused by the proximity of planets to their host red dwarfs is a major impediment to life developing in these systems.[1][2] Other tidal effects, such as the extreme temperature differences created by one side of habitable-zone planets permanently facing the star and the other perpetually turned away and lack of planetary axial tilts,[3] reduce the probability of life around red dwarfs.[2] Non-tidal factors, such as extreme stellar variation, spectral energy distributions shifted to the infrared relative to the Sun, and small circumstellar habitable zones due to low light output, further reduce the prospects for life in red-dwarf systems.[2]

There are, however, several effects that increase the likelihood of life on red dwarf planets. Intense cloud formation on the star-facing side of a tidally locked planet may reduce overall thermal flux and drastically reduce equilibrium temperature differences between the two sides of the planet.[4] In addition, the sheer number of red dwarfs, which account for about 85%[5] of at least 100 billion stars in the Milky Way,[6].

http://www.manyworld...ts-around-them/

Not only are most planets orbiting these red dwarf stars tidally locked, with one side always facing the sun and the other in darkness, but the life history of red dwarfs is problematic.  They start out with powerful flares that many scientists say would sterilize the close-in planets forever.

Also, they are theorized to be prone to losing whatever water remains even if the stellar flares don’t do it. Originally, it was thought that this would happen because of a “runaway greenhouse,” where a warming planet under a brightening star would evaporate enough water from its oceans to create a thick blanket of H2O vapor at high altitudes and block the escape of radiation, leading to further warming and the eventual loss of all the planet’s water.

The parching CO2 greenhouse of a planet like Venus may be the result of that.  Later it was realized that on many planets, another mechanism called the “moist greenhouse” might create a similar thick blanket of water vapor at high altitudes long before a planet ever got to the runaway greenhouse stage.

A moist greenhouse occurs when a watery exoplanet orbits too close to its host star. Light from the star will then heat the oceans until they begin to evaporate and are lost to space.

This happens when water vapor rises to a layer in the upper atmosphere called the stratosphere and gets broken into its elemental components (hydrogen and oxygen) by ultraviolet light from the star.
The extremely light hydrogen atoms can then escape to space. Planets in the process of losing their oceans this way are said to have entered a “moist greenhouse” state because of their humid stratospheres.



#196
myspace

myspace

    Member

  • Grup: Members
  • Posts: 446
  • Înscris: 09.09.2008
NASA a incheiat misiunea lui Kepler

spacealliance.ro/articles/view.aspx?id=20181031141717

#197
Infinitty

Infinitty

    Senior Member

  • Grup: Senior Members
  • Posts: 7,401
  • Înscris: 14.12.2008
  https://www.nextbigfuture.com/2016/08/a-proposed-space-telescope-for-quality.html

A proposed space telescope for quality viewing of earth sized exoplanets out to 45 light years and any object in the observable universe to 300 light year resolutionbrian wang | August 16, 2016  
The High Definition Space Telescope is a proposed space telescope that would be five times as big and 100 times as sensitive as the Hubble, with a mirror nearly 40 feet in diameter, and would orbit the sun about a million miles from Earth.
The revolutionary HDST space-based observatory would have the capability to find and study dozens of Earth-like worlds in detail.
The 10 milliarcsec resolution element of a 12 meter telescope (diffraction limited at 0.5 micron) would reach a new threshold in spatial resolution. It would be able to take an optical image or spectrum at about 100 parsec spatial resolution or better, for any observable object in the entire Universe. Thus, no matter where a galaxy lies within the cosmic horizon, we would resolve the scale at which the formation and evolution of galaxies becomes the study of their smallest constituent building blocks—their star-forming regions and dwarf satellites. Within the Milky Way, a 12 m telescope would resolve the distance between the Earth and the Sun for any star in the Solar neighborhood, and resolve 100 AU anywhere in the Galaxy. Within our own Solar System, we would resolve structures the size of Manhattan out at the orbit of Jupiter
Some simulated images show how it would resolve a solar system like ours 45 light years away.


Sponsored by Connatix
A simulated image of a solar system twin as seen with the proposed High Definition Space Telescope (HDST). The star and its planetary system are shown as they would be seen from a distance of 45 light years. The image here shows the expected data that HDST would produce in a 40-hour exposure in three filters (blue, green, and red). Three planets in this simulated twin solar system – Venus, Earth, and Jupiter – are readily detected. The Earth’s blue color is clearly detected. The color of Venus is distorted slightly because the planet is not seen in the reddest image. The image is based on a state-of-the-art design for a high-performance coronagraph (that blocks out starlight) that is compatible for use with a segmented aperture space telescope. Credit: L. Pueyo, M. N’Diaye (STScI).
It would likely cost about $8 to 10 billion.

The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a major space observatory under construction and scheduled to launch in October 2018. The JWST will offer unprecedented resolution and sensitivity from long-wavelength (orange-red) visible light, through near-infrared to the mid-infrared (0.6 to 27 micrometers), and is a successor instrument to the Hubble Space Telescope and the Spitzer Space Telescope. While Hubble has a 2.4-meter (7.9 ft) mirror, the JWST features a larger and segmented 6.5-meter (21 ft) diameter primary mirror and will be located near the Earth–Sun L2 point. A large sunshield will keep its mirror and four science instruments below 50 K (−220 °C; −370 °F).

The high definition space telescope is diffraction limited at 500nm, right in the middle of the visible spectrum. Diffraction limit is effectively the wavelength that any circular mirror gives its best angular resolution, the ability to discern detail. Angular resolution is governed by the equation λ (lambda) or wavelength expressed as a fraction of a meter / telescope aperture (D) expressed in metres; e.g HDST has its optimum functioning or “diffraction limit” at 500nm wavelength, defined by the equation 500nm (10-9)/12m.
The higher the aperture of a telescope the more detail it can see at any given wavelength and conversely the longer the wavelength, the less detail it can see. That is under perfect conditions experienced in space as opposed to the constantly moving atmosphere for ground-based scopes that will rarely approach the diffraction limit. So the HDST will not have the same degree of resolution at infrared wavelengths as visible wavelengths, which is relevant as several potential biosignatures will appear on spectra at longer wavelengths.
Approaching the diffraction limit is possible on the ground with the use of laser-produced guide stars and modern “deformable mirrors or “adaptive optics,” which help compensate. This technique of deformable primary and especially secondary mirrors will be important in space as well, in order to achieve the incredible stability required for any telescope observing distant and dim exoplanets. This is especially true of coronagraphs, though much less so with star-shades, which could be important in determining which starlight suppression technique to employ.
A large 12m HDST would require a WFE of about 1/20 lambda and possibly even lower, which works out to less than 30nm. The telescope would also require a huge giga-pixel array of sensors to capture any exoplanet detail, electron-magnifying CCDs, Electron Multiplying CCDs (EMCCDs), or their Mercury Cadmium Tellurium-based near infrared equivalent, which would need passive cooling to prevent heat generated from the sensors themselves producing “dark current,” creating a false digital image and background “noise”.
Such arrays already exist in space telescopes like the ESA Gaia, and producing larger versions would be one of the easier design requirements. For a UltraViolet-Optical-InfraRed (UVOIR) telescope an operating temperature of about -100 C would suffice (for the sensors, while only the telescope itself would be near room temperature).
All of the above is difficult but not impossible even today and certainly possible in the near future, with conventional materials like ultra-low expansion glass (ULE) able to meet this requirement, and more recently silicon carbide composites

simulated spiral galaxy as viewed by Hubble, and the proposed High Definition Space Telescope (HDST) at a lookback time of approximately 10 billion years (z = 2) The renderings show a one-hour observation for each space observatory. Hubble detects the bulge and disk, but only the high image quality of HDST resolves the galaxy’s star-forming regions and its dwarf satellite. The zoom shows the inner disk region, where only HDST can resolve the star-forming regions and separate them from the redder, more distributed old stellar population.
Credit: D. Ceverino, C. Moody, and G. Snyder, and Z. Levay (STScI).
SOURCES- Centauri Dreams, Wikipedia, NY Times

Attached Files

  • Attached File  star.png   408.66K   2 downloads

Edited by Infinitty, 01 November 2018 - 21:04.


#198
programmer08

programmer08

    Member

  • Grup: Members
  • Posts: 390
  • Înscris: 30.10.2018
Distantele sunt enorme si chiar daca ar exista o civilizatie de tip II  aflata  la  30 ani lumina de noi, e catusi de putin probabil sa fi interactionat cu noi sau sa interactioneze vreodata si foarte improbabil sa detina o tehnologie de parcurs  calatorii interstelare peste viteza luminii.
Cu o treime din viteza luminii tot le-ar lua unor extraterestrii vreo cateva zeci de mii de ani sa ajunga pana la noi, deci sa fim realisti!
Cine ar investi resurse si costuri colosale cu mult peste ce si-ar permite o intreaga planeta ca sa ne invadeze pe noi, dar sa mai fabrice nave spatiale care sa le iroseasca in batalii spatiale cu lasere ca-n filme puerile?

Noi  ca civilizatie de tip 0,7  nu putem sa ajungem pana la cea mai apropiata stea aflata la 4 ani lumina, ori cu tehnologia actuala, unei sonde i-ar lua 40 000-80 000 de ani sa ajunga pana acolo, un an lumina insemnand 20 000 de ani de calatorit.
Credeti ca o civilizatie de tip I sau II ar avea performante mai  mari?
Nu mai zic de comunicarea la distanta....jale mare!
Parerea mea e ca nu exista civilizatii interstelare in acest univers intre care sa existe interactiune.
Cel mult daca au avut doua civilizatii avansate norocul (sau ghinionul)  sa apara in acelasi sistem solar, fie intr-un unul binar.

Anunturi

Chirurgia endoscopică a hipofizei Chirurgia endoscopică a hipofizei

"Standardul de aur" în chirurgia hipofizară îl reprezintă endoscopia transnazală transsfenoidală.

Echipa NeuroHope este antrenată în unul din cele mai mari centre de chirurgie a hipofizei din Europa, Spitalul Foch din Paris, centrul în care a fost introdus pentru prima dată endoscopul în chirurgia transnazală a hipofizei, de către neurochirurgul francez Guiot. Pe lângă tumorile cu origine hipofizară, prin tehnicile endoscopice transnazale pot fi abordate numeroase alte patologii neurochirurgicale.

www.neurohope.ro

0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users

Forumul Softpedia foloseste "cookies" pentru a imbunatati experienta utilizatorilor Accept
Pentru detalii si optiuni legate de cookies si datele personale, consultati Politica de utilizare cookies si Politica de confidentialitate